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Abstract: Evaporation is an important factor in the overall hydrological balance. It is usually derived
as the difference between runoff, precipitation and the change in water storage in a catchment.
The magnitude of actual evaporation is determined by the quantity of available water and heavily
influenced by climatic and meteorological factors. Currently, there are statistical methods such as
linear regression, random forest regression or machine learning methods to calculate evaporation.
However, in order to derive these relationships, it is necessary to have observations of evaporation
from evaporation stations. In the present study, the statistical methods of linear regression and
random forest regression were used to calculate evaporation, with part of the models being designed
manually and the other part using stepwise regression. Observed data from 24 evaporation stations
and ERA5-Land climate reanalysis data were used to create the regression models. The proposed
regression formulas were tested on 33 water reservoirs. The results show that manual regression is
a more appropriate method for calculating evaporation than stepwise regression, with the caveat
that it is more time consuming. The difference between linear and random forest regression is the
variance of the data; random forest regression is better able to fit the observed data. On the other
hand, the interpretation of the result for linear regression is simpler. The study introduced that the
use of reanalyzed data, ERA5-Land products using the random forest regression method is suitable
for the calculation of evaporation from water reservoirs in the conditions of the Czech Republic.

Keywords: evaporation; water reservoir; regression; observed data; ERA5-Land data; R language

1. Introduction

Water management, changes in natural water regime and sustainable landscape be-
came an important topic of social discussions and policies not only in the Czech Republic,
but also around the world [1]. It is clear that global and local climatic conditions are chang-
ing and will have an impact on the water management sector and therefore they should be
given the highest attention. The evaporation in the Czech Republic also changes [2].

However, not only the climatic conditions change, but also the technology and knowl-
edge that can be used in water management and specifically in hydrology. With the rapid
development of remote sensing tools through recent decades an onset of easy-to-use high
quality products supplied both professionals and public in water resources.

In recent years, there has been a significant development in the supply of information
from remote sensing of the Earth utilizable in water management, not only for the profes-
sional public [3–5]. Another option is, for example, the use of globally available climate
reanalyses or other available data sources. Despite the development of data availability
and modelling tools, a question arises: How significant is the impact of the ongoing cli-
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mate change on hydrological balance components and the consequent impact on water
management [6]?

The hydrological balance is tied to rainfall-runoff processes, which are driven by
climatic, geographical and geomorphological factors. The climatic factors include meteoro-
logical factors affecting the evaporation and evapotranspiration from the catchment, such
as: precipitation, humidity, soil moisture, evaporation, air temperature, wind speed and
direction and atmospheric pressure [7].

Recently, a number of studies pointed out that evapotranspiration significantly affects
the hydrological balance. The key role of evapotranspiration in hydrological balance was
the subject of many recent studies, e.g., [8–11]. And it is nowadays widely recognized, that
on the most of the Earth’s surface evaporation plays crucial role in the hydrological cycle.

The study [12] illustrates the impacts of climate change on the water cycle, which
may impact from total evaporation, precipitation, atmospheric humidity and horizontal
moisture transport at the global scale.

There are many methods to calculate evaporation, which can be calculated from free
water, from the soil surface or from vegetation over a period of time. The evaluation of
evaporation can be done by direct methods namely measurement or by indirect methods:
empirical methods, remote sensing of the Earth on regional or global scales [13,14], the use
of models that are classified as fully physically-based combination models, semi-physically
based models or black-box models [15].

The total evaporation can be divided into actual, potential or reference evapotran-
spiration. The potential evaporation can be determined by empirical relationships or
by measurement, the empirical relationships may differ in the input data or in the time
step [8,16]. The calculation of the reference evapotranspiration is defined according to the
FAO methodology, with the reference area being devided in [17].

The studies [18,19] evaluated evapotranspiration calculated on the base of empirical
equations, which were divided into categories: mass-transfer, radiation based method and
temperature-based method. The best equations from each category were then selected and
compared based on the FAO and Penman–Monteith equations [20].

The estimation of reference evapotranspiration was used in the study [21], where the
Penman–Monteith temperature-based equation achieved the best rating for the evaluation
of reference evapotranspiration because it preserves the physical philosophy of the Penman–
Monteith equation method. The method was applied at a global scale using the Köppen
climate classification system with respect to the world dataset under different climate
conditions. Calculation of reference evapotranspiration based on indirect methods can
provide acceptable results when direct measurements of are not available [15].

Since most of the empirical formulas are based on geographical location, it is straight-
forward that the empirical calculation of evapotranspiration is not the same for different
regions, due to the different climatic conditions [17]. National standards, legislation
and expertise also takes place resulting that different methods are preferred in different
countries, e.g., Netherlands—Makkink’s method [22], Slovakia—Budyko’s method [23],
Bulgaria—Delibaltov–Hristov–Tsonev method [24].

The Penman–Monteith method is considered the sole standard for calculating refer-
ence evapotranspiration. The inputs to the equation are climatic data, solar radiation, air
temperature, humidity and wind speed. It allows the calculation of evapotranspiration at
different times of the year and in different regions, yet a precise measurement at a given
location can easily replace the simplified Penman–Monteith equation [17].

Other methods of calculating evapotranspiration include the use of empirical rela-
tionships, e.g., the relationship between observed evaporation from evaporation stations
and meteorological quantities, these relationships can be calculated either linearly or non-
linearly [25,26] using machine learning algorithms [27,28] linear regression or random
forest regression.

The assessment of long-term climate variables can be based on time series. The time
series is a sequence of measurements recorded over time, that can be analysed using,
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e.g., Least-Squares Spectral Analysis, Least-Squares Wavelet Analysis, Least-Squares Cross
Wavelet Analysis [29].

Other methods for evaluation may include parametric and non-parametric trend tests,
which are used in machine learning [30,31]. The parametric method (logistic regression,
linear discriminant analysis and simple neural network) use a fixed number of parameters
to build models, require fewer variables and the result may be affected by outliers. The non-
paramtric method (the Mann–Kendall, Spearman’s Rho and k-Nearest neighbors) use a
flexible number of parameters, both variable and attribute can be used in the models,
the result is not affected by outliers.

In this paper, we explore the relationships for the calculation of evaporation from
water surface in the Czech Republic using reanalyzed climate data and the constructed
linear models (LM) and random forest models (RFM) for the calculation of evaporation.
Evaporation estimated from the derived models was compared with observed evaporation
from evaporation stations. Finally, the derived relationships were applied to the selected
water reservoirs.

Specifically, we aim to answer the following questions: Which statistical method for
calculating evaporation achieves better linear regression or random forest regression? How
many variables are important for determining the formula for calculating evaporation?
How important is the geomorphological information (elevation and location) for calculating
evaporation using linear and non-linear models? The main objective of the evaporation
estimation from water surface was to derive a universal relationship for the whole territory
of the Czech Republic.

This paper is structured as follows: Section 2 introduces the area of interest and input
data. The statistical method for evaluation evaporation with respect to goodness-of-fit
(GOF) is evaluated in the R environment [32] and described Section 3. The results and
discussion are in Section 4 along with a detailed evaluation of the goodness-of-fit (GOF)
regression for evaporation stations and subsequently for water reservoirs. The paper is
concluded in Section 5.

2. Study Area and Data

The study area is defined by the state border of the Czech Republic. Within the region
(51◦03′ N to 48◦33′ N latitude and 12◦05′ E to E 18◦ 51′ longitude) the long–term (1981–2010)
mean annual precipitation totals at 709.5 mm, mean annual air temperature is 7.9 ◦C, mean
runoff is 205.5 mm [33] and long-term runoff coefficient is thus 0.29 (29% of precipitation
totals runs off).

Figure 1 describe long-term temperature, evaporation trend at evaporation station
Hlasivo. The Hlasivo evaporation measuring station provides a consistent time series
of 58 years, the evaporation values are measured by a 20 [m−2] benchmark evaporator.
Other observed variables are: air temperature at 2 m [°C], water surface temperature in the
evaporimeter [°C], relative humidity [%], global solar radiation [W·m−2] and wind speed
at 2 m [m·s−1] [34].

Figure 2 shows the selected 24 evaporation stations and 33 water reservoirs. The evap-
oration stations were assigned to water reservoirs based on the Quitt classification and
the elevation [35]. The elevation differences between the evaporation stations and water
reservoirs do not exceed 100 m a.s.l. The Quitt classification divides the Czech Republic
into three climatic regions (cold, moderately warm and warm regions), with an evaporation
station in the same climatic region always assigned to a reservoir. The observed evapora-
tion from the evaporation station was recorded between 1957 and 2019 (most evaporation
station was recorded from 2005).
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Figure 1. Mean monthly temperature (green lines), water temperature (blue line) and evaporation
(red line) at Hlasivo evaporation station for period 1957–2019.

Figure 2. Study area: Czech Republic with climatic regions [35], blue color: water reservoirs with
altitude of dam and red color: evaporation stations with altitude.

The data from the evaporimeter (EWM) were provided by the Czech Hydrometeoro-
logical Institute, Palivový kombinát Ústí, state-owned enterprise. The T. G. Masaryk Water
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Research Institute, public research institution (TGM WRI, p.r.i.) provided data from the
floating evaporator and data from the evaporation station Hlasivo.

Observed data from evaporation stations were aggregated into monthly step which
were then used to evaluate evaporation from water reservoir surface, because the measured
daily values are affected by random error [36]. The observed evaporation (may–october) is
from 459 [mm·year−1] (Pec pod Sněžkou) to 760 [mm·year−1] (Holešov), mean evaporation
(from evaporation stations) 627 [mm·year−1], minimum mean daily rate (1.38 [mm·year−1])
is in October and maximum mean daily rate is in July (4.53 [mm·year−1]), with maximum
in June 2017 (5 stations exceeded 6.5 [mm·year−1]).

The relationships for calculating evaporation from the water surface were developed
using linear and nonlinear regression. Measured evaporation from evaporation stations
serves as the dependent variable. ERA5-Land climate reanalysis data were used for the
non-dependent variables from 1981 to 2019.

Climate Reanalysis

The purpose of the reanalysis is to provide an estimate of quantities describing at-
mospheric, climatic and hydropedological processes and behavior of oceans with global
coverage and relatively high spatiotemporal resolution.

The reanalyses are outputs of various models, usually including a hydrological, at-
mospheric and ocean model and a model of the Earth’s surface. The advantage is the
provision of multidimensional spatially complete and coherent information about the
global circulation and hydroclimatic quantities. Climate reanalyses are generated in a
similar manner as in numerical weather forecasts, where the prediction models based on
the development of the climate system from the initial state are used to predict the future
state of the atmosphere. The initial state of the climate is a key input into the forecast
determining the future development of the model simulation. Data assimilation is used
to estimate the initial state that best matches the available data, while taking into account
model errors. The climate reanalysis is performed as the only version of data assimilation
that includes the use of the prediction model [37].

The reanalysis uses a combination of modeled data and observed data with emphasis
on the laws of physics. The data are stored in the ECMWF archive and copied to the
COPERNICUS Climate Data Store archive, from where they are freely downloadable using
the CDS catalog or the CDS API application in the GRIB or NetCDF format.

The data was downloaded in NetCDF, which is a common format in drought or flood
forecasting [38]. The spatial resolution is 0.1◦ × 0.1◦, which represents approximately a
grid of 9 km × 9 km.

The data set consisting of 2 m temperature [K], skin temperature [K], 2 m dew-point
temperature [K], 10 m v-component of wind [m·s−1], surface pressure [Pa], surface net solar
radiation [J·m−2] was selected to calculate evaporation from water reservoir. Temperature
units [K] were converted to [°C] and energy units from [J·m−2] were converted to [W·m−2],
values divided by the accumulation time expressed in seconds. Relative humidity [%] was
calculated using the August–Roche–Magnus approximation [39], where the input data
were dew point and temperature.

In the final dataset preparation, evaporation data from evaporation stations and
geomorphological variables (elevation, latitude and longitude) were added to the reana-
lyzed data.

3. Methods

Statistical methods of linear and non-linear regression (random forest regression) were
used to evaluate evaporation from the water reservoir. In this case, the main objective of the
regression is to determine the best fit between the observed values from the evaporation
stations and the variables from the ERA5-Land project. The resulting linear and non-
linear models were evaluated based on cross validation and goodness-of-fit (GOF): mean
absolute error (MAE), root mean squared error (RMSE), coefficient of determination (R2)
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and relative error (RERR). This section introduced building linear and non-linear models
and their evaluating.

3.1. Linear Regression

Linear regression attempts to explain the values of a dependent variable through
other quantities. In our case, an attempt was made to explain the dependent variable
(evaporation value or evaporation rate from evaporimeter stations and evaporimeters
EWM) using other variables (air temperature, surface temperature, wind, surface net solar
radiation, dew point, pressure, latitude and altitude, evaporation type distribution) using
18 linear models created by sequential testing manually (8 models) and on the basis of
stepwise regression (10 models).

The first set of models (built manually) was evaluated based on the Akaike Information
Criterion (AIC) [40] value and the QQ plot was used for visual diagnostics [41]. The value
of AIC is the sum of two terms, the first is proportional to the logarithm of the residual
sum of squares, the second term is proportional to the complexity of the model (number of
its members). When building the LM models, it can often happen that more independent
variables reduce the sum of residues (improves the fit of the model with the observed
data), however, this can result in an overfitted LM. The part of the AIC that penalizes the
complexity of the model should prevent overfitting. When verifying the assumptions of the
model (normality of residues), the QQ plot of residues can help. In the QQ plot of residues,
two quantiles are plotted against each other—the theoretical quantile from distribution
and the quantile with the actual residues of the model.

The second part of the linear models was developed using stepwise regression. R-
packages caret, leaps, MASS [42] were used for this regression. The R-package caret uses
the principle of machine learning and the R-package leaps are used to calculate the stepwise
regression. The R-package caret has a function train(), which allows the implementation
of a sequential selection of predictors, where the linear regression selection is selected:

• leapBackward,
• leapForward,
• leapSeq.

In this work, a method with backward selection was selected. The hyperparameter
nvmax corresponds to the maximum number of predictors that are included in the model.
In this work, 11 predictors were used. Furthermore, it is also possible to set the parameters
of the validation method, in this work it was cross validation with 500 iterations.

3.2. Random Forest Regression

Random forest (RF) is a combined learning method for classification and regression
that creates multiple decision trees during learning and then outputs the modus (most
frequent value) of the classes returned by each tree to form a regression forest. The resulting
regression function is defined as a weighted average of the regression functions of multiple
trees. Regression forests belong to the so-called committee or ensemble methods, the main
idea of which is to combine several separate models into a single ensemble. Thus, it uses
the so-called collective decision [26,43]. A random forest consists of a set of trees T1,. . . ,TN
whose classification or regression functions can be expressed as follows:

h(X, O1), . . . , h(X, ON), (1)

where h is a function, X is a predictor and O1,. . . ,ON are independent equally distributed
random vectors. For the Random forests method, binary trees of type CART [44] are used.
Similar to the creation of individual trees or other calibrations, a split into test and training
sets is used. The R-package randomforest [27] was used in this work.

Random forest is an approach to build predictive models for both classification and
regression tasks. It is a way to combine poorer performing baseline models to obtain better
predictive models. Due to their simple nature, low assumptions and high performance,
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RF models have been widely used in machine learning. The term “forest” refers to a set
of decision trees that are themselves “weak” classifiers. A regression forest does not have
the same predictive power as a stand-alone regression tree. If a single tree splits into a
single criterion, it is very sensitive to changes. RF models classify variables based on their
importance to achieve the best RF model [45].

3.3. Evaluation of Regression

Cross validation is used to improve the quality of regression models [46]. Depending
on the method chosen, cross-validation is divided into k-fold cross validation, k-fold cross
validation and leave-one-out. In our experiment, the method selected was leave-one-out
validation. The dataset was split into training and test data, with one subset of data
removed for the training data. The dataset consisted of the selected stations and in the
training data the subset consisted of one sampled station, for a total of 24 stations, resulting
in 24 iterations. Goodness-of-fit (GOF) criteria were used for further evaluation.

3.4. Evaluation of Regression by Goodness-of-Fit (GOF)

The linear regression and random forest regression set were evaluated based on their
GOF (R2 [47], RMSE [48], MAE [48] and RERR [49]). This means that we would like to
identify the best model which is the most suitable for the calculation of evaporation in the
Czech Republic.

(i) The R2 is given by:

R2 = 1− RSS
TSS

, (2)

where RSS is the residual sum of squares and TSS the total sum of squares from
predicted evaporation values Ep and of tested data of cross validation Et.

• R2 indicates a measure of the quality of the regression model and explains the
proportion of variability in the dependent variable of the model R2, it may
attain maximum value of 1, which means perfect prediction of the dependent
variable. Conversely, value of 0 means that the model provides no information
for understanding the dependent variable and is useless.

(ii) RMSE is given by:

RMSE =

√
(

1
n
)

n

∑
i=1

(Epi − Eti)2, (3)

where Epi is predicted evaporation values i-th case, Eti tested data from cross valida-
tion and N is the total number of simulated values.

• It was used as the standard statistical metric providing a relatively high weight
to large errors.

(iii) MAE is given by:

MAE =
1
n

n

∑
i=1
|Epi − Eti|, (4)

The mean absolute error (MAE) is calculated as the average of the absolute differences
between the predicted evaporation values Epi and tested data from cross valida-
tion Eti.

• MAE is used to measure how close the predictions or forecasts are to the final
results. ’Absolute’ means that negative values are converted to positive values.
The error is less sensitive to occasional very large errors because it does not
amplify calculation errors.

(iv) RERR is given by:

δ =
|Ep− Et|

Et
. (5)
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is the ratio of the absolute error between Ep-predicted evaporation values and Et-
tested data to the true of the value Ep-predicted evaporation values.

• It is a dimensionless quantity and can be given in percentages, it may attain both
positive and negative values. Relative error can be used to compare quantities
with different dimensions.

3.5. Final Evaluation of Regression Models

The last step of the evaluation was to create a scoring matrix and consecutively remove
the models from the end (order of removal was from the worst models to the best). In order
for the removal to occur, the individual models had to be ranked (from best to worst) or
standardized using a GOF. Based on this procedure, the final evaluation was performed.

4. Results and Discussion

In this section, a detailed evaluation of linear and random forest regression with
respect to GOF (R2, RMSE, MAE and RERR) is presented. After evaluating all GOFs, RMSE
was selected. Then, the best evaporation formulas are selected from the group of linear
models (LM) and random forest models (RFM). Selected models were used to calculate
evaporation from the water reservoirs.

4.1. Evaluation of Regression Models

Regression models LM and RFM were evaluated by cross-validation. The cross-
validation procedure was as follows:

(i) In the training data, one station out of 24 stations was selected and validation of the
inferred patterns from 23 stations was performed for this station.

(ii) Validation was carried out successively for all stations and models.
(iii) For validations, the goodness-of-fit R2, RMSE, MAE and RERR were calculated.
(iv) Based on the RMSE, the function of R [32] rank() was used, which lists the order

of individual values corresponding in an ascending order to the sorted vector. Af-
ter creating a unique identifier, a matrix was created where the models were on the
x-axis and on the stations on the y-axis were. Based on this matrix, the best models
were selected.

The models were evaluated and compared using GOF (see Figure 3). The results show
that RF models can fit the data better than LM models. RF models are more consistent than
LM models for all criterion functions. It can also be seen from the graph and results that
for some stations the models do not achieve a good fit.

Outliers (the worst 10% GOF values) are present in all LM models, which also happens
in RF models, but on a smaller scale. The outliers corresponded to 70% of the maximum
value, thus setting the limit value for selected GOF. Table 1 shows evaporative stations that
have exceeded the limit values for the selected GOF.

Table 1. Evaluation of evaporation stations based on GOF.

Goodness-of-Fit Limit Values Station above the Limit Value

R2 <0.2 Hlasivo, reservoir Most
RMSE <1.5 Hlasivo, reservoir Most, Praha Podbaba

MAE <1 Hlasivo, reservoir Most, Praha Podbaba, Praha Libuš,
Dukovany

RERR <1.3 Hlasivo, reservoir Most, Praha Podbaba, Praha Libuš
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Figure 3. Model evaluation using GOF (R2, RMSE, MAE, RERR). The lines in the plot represent the
LM and RFM models. Part (a) linear regression models (18 models) is divided into two parts: orange
line: models created manually (8 models), grey part: stepwise regression was used (10 models). Part
(b) random forest regression models (15 models).

By the method of sorting, using the R function rank(), 3 linear and 3 random forest
models (RFM) were selected. The selected regression models with average values of GOF
are presented in Table 2.

Table 2. Average values of goodness-of-fit of selected models.

ID R2 RMSE MAE RERR

LM1 0.85 0.58 0.47 1.04
LM7 0.84 0.56 0.45 1.01
LM8 0.84 0.56 0.46 1.02

RFM4 0.86 0.51 0.42 1.02
RFM5 0.86 0.51 0.42 1.02
RFM15 0.86 0.51 0.42 1.01

The top 3 linear models according to all criterion functions are LM1, LM7 and LM8
and the top 3 RFM are RFM4, RFM5 and RFM15. The selected models are shown in
Figure 4, green line represents linear models and blue line represents random forest models.
The average value of RMSE for the selected linear models is 0.57, the minimum value
is 0.22. The selected RFM had an average RMSE value of 0.51 and a minimum value of
0.18. The models that were designed based on stepwise regression achieved worse results
than the models that were built manually based on data analysis. Models designed using
manual regression achieved better results; however, some models designed using stepwise
regression achieved good results in some cases, with less demanding inputs. The linear
models were further supplemented with LM12, which also showed good results and the
derived equation is more useful for practice due to its simplicity. All regression models are
presented in the Sect. Appendix A in Table A1.
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Figure 4. Evaluation of models using GOF, where the best models are selected. Part (a) linear
regression models, green lines are LM1, LM7 and LM8. Part (b) random forest regression models,
blue lines are RFM4, RFM5 and RFM15.

Selected regression formulas based on linear models:

LM1 = 45.84 + (0.173T · (−0.004R))0.0008 − 0.183D− 0.0002P− 0.0002asl − 0.475Y + 0.063X, (6)

LM7 = 16.97 + 0.082W + (0.235T · (−0.263D))0.007 + 0.008R− 0.0003asl − 0.368Y + 0.063X, (7)

LM8 = 17.33 + 0.055X− 0.367Y− 0.0003asl + (0.2134T ∗ (−0.277D))0.009 + 0.008R, (8)

LM12 = 19.82 + 0.302ST + 0.006R− 0.170D− 0.419Y. (9)

Selected variables for best random forest regression models:

RFM4 : W, (T ∗ D), R, asl, Y, X, (10)

RFM5 : X, Y, asl, (T ∗ D), R, (11)

RFM15 : W, T, ST, R, D, P, H, asl, Y, X. (12)

where:
• LM1, LM7, LM8, LM12, RFM4, RFM5, RFM15 are formula identifiers for evaporation,
• T . . . temperature (2 m) [°C],
• ST . . . surface temperature [°C],
• P . . . surface pressure [Pa],
• W . . . wind speed [m·s−1],
• R . . . surface net solar radiation [W·m−2],
• D . . . dew point [°C],
• H . . . relative humidity [%],
• asl . . . elevation above sea level [m],
• X . . . longitude,
• Y . . . latitude.

4.2. Model Application to Water Reservoirs

For testing, the best LM models (LM1, LM7, LM8 and LM12), RF models (RFM4,
RFM5, RFM15) already described above were applied to selected reservoirs in the Czech
Republic for the period May–October. The selection of the May–October period is because
the evaporation from the observed data in the winter months is not measured due to
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freezing. The calculated evaporation values for the water reservoirs are introduced in the
Sect. Appendix A in Table A2.

The difference and seasonality in evaporation between the water reservoirs is de-
scribed in Figure 5 where green lines represent linear models (LM), blue lines random
forest models (RFM) and red lines introduce observed data. The average across all data
is represented by the bold lines. The mean value from LM models and RFM models over
the period (1981–2020) for reservoirs for May–October is 546.54 [mm·year−1] and for RFM
is 546.02 [mm·year−1]. The mean value of the evaporation stations (2005–2019) is 497.26
[mm·year−1]. The highest increase in evaporation is observed in the month of July, how-
ever, in the summer months (June–August) a significant increase in evaporation can be
observed for all models.

Figure 5. Monthly evaporation for the water reservoirs throughout 1981–2019 (green lines represent
linear regression, blue lines represent random forest regression and red lines observed data) and
from evaporation stations throughout 2005–2019. Bold lines represent means for water reservoirs
and evaporation’s stations.

Top models LM1 and RFM12 are compared with elevation for the whole water reser-
voir. The following Figure 6 shows the relationship between elevation and evaporation,
where the green line represents linear regression model and blue line represents random
forest model. The elevation of water reservoirs is 170.54–781.91 m a.s.l. The evaporation
decreases with the elevation above sea level. Both models are influenced by local conditions
because both models have input geographic coordinates and elevation.
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Figure 6. The lines (a) and (b) represent the relationship between yearly total evaporation and
elevation based on the derived formulas. The points represent yearly evaporation and altitude for
both models.

The results of the study will be implemented to the hydrological model Bilan [50,51]
and for assessing climate change studies in the Czech Republic [52].

5. Concluding Remarks

The main objective of the estimation of evaporation from the water reservoirs was to
derive a universal relationship for the whole territory of the Czech Republic.

The estimation of evaporation from water reservoirs is complicated because a large
number of water reservoirs do not have observed evaporation data. In this work, Quitt’s
climate classification was used to assign a evaporimeter station that is not near a reservoir
to a given reservoir based on climate region and elevation. Within the Czech Republic,
the evaporation value from water reservoirs is determined on the basis of a handling order,
which is established according to a Czech technical standard which is based on old climatic
data and does not deal with climate change. For this reason, the determination of the
evaporation from water reservoirs is based on estimation using statistical methods rather
than exact measurement.

The ERA5-Land climate reanalysis data were used for derivation and were chosen
for their comprehensiveness, availability, high spatial resolution, long time series and
advantageous management. Relative humidity was included into the results based on
the calculated August–Roche–Magnus approximation. The climate reanalysis data were
exported for stations and water reservoirs.

The derivation of the relationship for evaporation was based on the multiple linear
regression method, where the values of the dependent variable (evaporation) were sought,
based on two or more variables (predictors: air temperature, surface temperature, wind
speed, surface net solar radiation, dew point, surface pressure, dew point, altitude, latitude,
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longitude and calculated humidity). The construction of the models was done (i) manually,
where the evaluation was done using the AIC parameter and the quantile–quantile (plot-
QQ) was used for visual diagnostics, this method was time consuming, (ii) using stepwise
regression, where the predictors are entered sequentially and models from one to X-selected
variables were generated, this method is not time consuming. Random forest regression
was used to account for non-linear relationships. Linear and random forest regression
models were cross-validated and evaluated using criterion functions (R2, RMSE, MAE and
RERR). Finally, 3(+1) LM models and 3 RF models were selected. The models contained a
large number of independent variables (6–7), possibly leading to model overfitting and
therefore another model was selected which performed best for the RMSE criterion function
and is based only on 4 independent variables and is therefore more user friendly.

It turned out that geomorphological information (elevation, location) appeared more
in the manually derived models as opposed to models constructed using the stepwise
regression method. When comparing linear models (LM) and random forest models
(RFM), LM was found to have much more variability in the outcome compared to the RFM.
The advantage of RFM is their adaptability, but the subsequent interpretation of the results
can be a problem. This has been shown in the design of LM and RFM as well as when
applying the proposed models to water reservoirs.

Evaporation values for the period 1981–2019 were calculated for the selected water
reservoirs and selected formulas based on ERA5-Land climate reanalysis data.

For the evaluation of evaporation, models from LM and RFM models were used.
Among the best models that were evaluated by linear regression, models LM1 from the
manual linear regression group and LM12 from the stepwise regression group were used.
Model LM1 was selected as the best model among the six predictors. The LM1 model can
be replaced by an alternative model LM12 with which also performed satisfactorily with
four predictors.
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Abbreviations
The following abbreviations are used in this manuscript:

LM Linear Model
RFM Random forest Model
GOF goodness-of-fit
EWM evaporimeter
ERA5-Land climate reanalysis product
ECMWF European Centre for Medium-Range Weather Forecasts
COPERNICUS European Union’s Earth Observation Programme
CDS Climate Data Store
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API Application Program Interfaces
GRIB General Regularly-distributed Information in Binary form
NetCDF Network Common Data Form
MAE Mean Absolute Error
RMSE Root Mean Squared Error
R2 Coefficient of Determination
RERR Relative Error
AIC Akaike Information Criterion
QQ Quantile-Quantile Plot

Appendix A

Table A1. Review of linear models and random forest models, where evaporation E [mm·month−1],
temperature T (2 m) [°C], surface temperature ST [°C], wind speed W [m·s−1], surface net solar
radiation R [W·m−2], dew point D [°C], relative humidity H [%], surface pressure P [Pa], elevation
above sea level asl [m], longitude X, latitude Y.

ID Manual Linear Regression

LM1 E ~ (T * R) + D + P + asl + Y
LM2 E ~ T + (ST2) + R + Y
LM3 E ~ H + W + T + ST + asl
LM4 E ~ W + T + asl + (X * Y)
LM5 E ~ W + T + (X * Y) + asl
LM6 E ~ W + T + R + (X * Y) + asl
LM7 E ~ W + (T * D) + R + asl + Y + X
LM8 E ~ X + Y + asl + (T * D) + R)

ID Stepwise regression

LM9 E ~ ST
LM10 E ~ ST + R
LM11 E ~ ST + R + Y
LM12 E ~ ST + R + D + Y
LM13 E ~ ST + R + D + asl + Y
LM14 E ~ ST + R + D + P + asl + Y
LM15 E ~ ST + R + D + P + asl + Y + X
LM16 E ~ W + ST + R + D + P + asl + Y + X
LM17 E ~ W + T + ST + R + D + P + asl + Y + X
LM18 E ~ W + T + ST + R + D + P + H + asl + Y + X

ID Random forest regression

RFM1 E ~ (T * R) + D + P + asl + Y
RFM2 E ~ H + W + T + ST + asl
RFM3 E ~ W + T + asl + (X * Y)
RFM4 E ~ W + (T * D) + R + asl + Y + X)
RFM5 E ~ X + Y + asl + (T * D) + R
RFM6 E ~ ST
RFM7 E ~ ST + R
RFM8 E ~ ST + R + Y
RFM9 E ~ ST + R + D + Y
RFM10 E ~ ST + R + D + asl + Y
RFM11 E ~ ST + R + D + P + asl + Y
RFM12 E ~ ST + R + D + P + asl + Y + X
RFM13 E ~ W + ST + R + D + P + asl + Y + X
RFM14 E ~ W + T + ST + R + D + P + asl + Y + X
RFM15 E ~ W + T + ST + R + D + P + H + asl + Y + X
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Table A2. Average year evaporation [mm·year−1] values for selected reservoirs by model.

Water Reservoir LM 1 LM 7 LM 8 LM 12 RF 4 RF 5 RF 15

1 Mariánské Lázně 456.57 406.37 407.53 460.76 448.25 441.19 440.32
2 Medard 517.42 419.89 420.58 445.50 464.99 461.08 452.22
3 Nesyt 734.47 738.63 738.35 720.95 693.63 694.18 693.05
4 Rožmberk 621.84 577.57 579.15 581.44 581.58 576.09 555.99
5 Staňkovský pond 629.94 570.13 570.85 586.79 566.87 562.56 550.49
6 Bezdrev 629.52 568.50 568.80 564.59 571.94 567.83 564.59
7 jezero Most 507.42 470.84 468.07 449.22 540.34 546.20 510.86
8 Bedřichov 302.96 379.47 381.93 398.94 442.42 435.92 442.27
9 Brno 612.95 625.37 626.29 606.97 627.63 625.78 609.18

10 Dalešice 617.56 606.14 606.28 607.93 608.56 607.86 597.58
11 Harcov 437.17 405.10 408.10 404.30 452.33 447.10 445.74
12 Hněvkovice 616.43 565.34 566.31 570.69 569.44 565.61 546.01
13 Nové Mlýny dolní 715.26 723.92 724.69 703.13 690.91 692.57 689.31
14 Nové Mlýny horní 716.69 718.96 719.29 696.68 684.96 685.64 682.96
15 Nové Mlýny střed 719.17 718.65 719.25 693.89 685.19 685.79 682.40
16 Orlík 566.86 536.74 536.87 551.54 557.05 557.89 539.68
17 Přísečnice 392.88 364.87 363.56 404.01 448.05 445.16 429.48
18 Rozkoš 483.40 480.53 481.91 453.28 514.23 513.06 489.23
19 Skalka 485.34 421.82 425.00 460.64 472.03 467.27 459.67
20 Slezská Harta 455.25 487.71 483.71 463.05 507.73 511.28 480.48
21 Stráž pod Ralskem 447.56 439.12 441.68 430.19 464.72 459.26 462.60
22 Těrlicko 510.93 547.67 546.09 492.15 538.75 537.80 507.56
23 Vranov 646.21 617.51 616.28 621.22 602.25 599.90 590.68
24 Vrané 547.91 543.23 540.54 543.30 512.07 509.25 520.30
25 Vír I 521.65 513.87 512.16 510.30 528.49 531.97 504.17
26 Hracholusky 543.98 491.44 490.70 513.37 500.41 497.08 491.13
27 Jesenice 507.08 421.91 424.18 456.80 468.90 464.60 456.41
28 Kružberk 508.67 503.72 499.90 480.90 512.99 515.47 489.92
29 Lipno I 586.06 508.19 510.88 541.07 516.80 512.38 476.28
30 Nechranice 493.24 479.92 476.84 465.56 502.13 500.34 490.44
31 Římov 625.90 558.38 559.47 564.04 560.89 557.42 524.97
32 Švihov 546.86 527.77 526.51 533.85 513.68 512.63 506.66
33 Žehuňský pond 536.57 564.87 563.07 548.24 543.89 539.64 551.57
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